動的光散乱(DLS)

光子相関分光法(PCS)としても知られている動的光散乱(DLS)は、ナノ粒子の特性評価方法として一般的に使用されています。 DLS粒度分析器は、ナノ粒子、乳濁液、または懸濁液の測定において、正確性、迅速性、再現性が優れているという利点があります。 Nanoptic 90ナノ粒子径アナライザーは、動的光散乱に基づく典型的なナノ粒子径測定装置です。ナノ粒子径分布測定でナノ粉末材料を理解および研究するために不可欠なツールである、1ナノメートルまでのナノ材料を測定できます。
  • 燃料電池/バッテリー 燃料電池/バッテリー

    Bettersize機器は、粒子径分布、かさ密度、タップ密度、およびその他のカソードおよびアノード材料の物理的特性データを提供し、燃料電池の技術開発と性能向上に貢献します。

    詳細
  • 医薬品開発 医薬品開発

    Bettersize機器は、医薬品の研究、開発、製造の全プロセスに貢献できるように、粒子径分布と粉末の物理的性能のテストデータを提供します。 粒度測定は製薬業界にとって非常に重要です

    詳細
  • 農薬分析 農薬分析

    ベターサイズの機器は、あらゆる種類の懸濁剤の粒子径測定と粒子形状分析に必要なツールです。 国際標準、高性能、高精度のBettersize粒子径分析装置は、農薬業界の粒度分析試験への信頼を高めます。

    詳細
  • 塗料、インク、顔料、コーティング 塗料、インク、顔料、コーティング

    Bettersize機器は、塗料、インク、コーティング製品の粒子径分布や粉体流動性などの物理データを提供します。 粉体塗装の製造では、粒子径のテストが非常に重要です。

    詳細
  • 化学薬品 化学薬品

    Bettersize機器は、化学物質の粒子径、粒子形状、および粉体特性の研究および生産管理で広く使用されています。

    詳細
  • 鉱業および鉱物 鉱業および鉱物

    ベターサイズの粒子径と粒子形状分析機器は、あらゆる種類の鉱業および鉱物の研究、製造、および応用で広く使用されており、有利な利益をもたらしています。

    詳細
  • 3Dプリントと金属粉体 3Dプリントと金属粉体

    金属の粒子径分布と粒子形状分析データを提供します。

    詳細
  • セラミックス セラミックス

    Bettersize装置は、セラミック製品の粒度分布試験と生産管理を提供します。

    詳細
  • エレクトロニクス

    Bettersize装置は、電子製品の原材料の粒子径分布テストと粒子形状テストを提供します。

    詳細
  • 研磨剤 研磨剤

    Bettersize装置は、炭化ケイ素、ガーネット、ダイヤモンド、コランダム、酸化アルミニウムの粒子径分布と粒子形状分析を提供します。

    詳細
  • セメント セメント

    Bettersize装置は、セメント製品の粒子径分布と粉体物性データを提供します。

    詳細
  • 土壌と土砂科学 土壌と土砂科学

    Bettersize装置は、土壌および堆積物サンプルの粒子径分析および砂含有量分析データを提供します。

    詳細
  • 石油および石油化学製品 石油および石油化学製品

    粒子径は、石油化学産業において非常に重要なパラメーターです。

    詳細
  • 石炭産業 石炭産業

    Bettersize装置は、石炭産業製品(石炭、石炭水スラリー、石炭灰)の粒子径分析データを提供します。

    詳細
  • 食品および飲料 食品および飲料

    食品および飲料業界の粒子径分布テストは、品質と生産効率を改善するために必要なデータを提供します。

    詳細
測定装置

Theoretical background - 翻译中...

What is light scattering? When a monochromatic and coherent light source irradiates onto the particle, the electromagnetic wave will interact with the charges in atoms that compose the particle, and thus induce the formation of an oscillating dipole in the particle. Light scattering refers to the emission of light in all directions from oscillating dipole. During quasi-elastic light scattering, the frequency changes between scattered light and incident light are small, and the light scattered by the oscillating dipole has a spectrum that broadens around the incident light frequency.
The scattered light intensity depends on the particle's intrinsic physical properties such as size and molecular weight. The scattered light intensity is not a constant value; it fluctuates over time due to the random walk of particles that are undergoing Brownian motion which refers to the particle's continuous and spontaneous random walk when placed in the medium resulting from the collisions between the particles and the medium molecules. The fluctuations in scattered light intensity with time allows us to calculate the diffusion coefficient through the auto-correlation function analysis. To quantify the speed of Brownian motion, the translational diffusion coefficient is modelled by the Stokes-Einstein equation. Notice here the diffusion coefficient is specified by the word “translational”, indicating that only the translational, but not the rotational movement of the particle is taken into account. The translational diffusion coefficient has the unit of area per unit time, where the area is introduced to prevent the sign change convention when the particle is moving away from its origin. Then using the Stokes – Einstein equation, the particle size distribution can be calculated from the diffusion coefficient. This technique is called the dynamic light scattering, abbreviated as DLS.

The Stokes-Einstein equation is expressed as follows:
The Stokes-Einstein equation
Equation 1: The Stokes-Einstein equation


Hydrodynamic radius refers to the effective radius of a particle that has identical diffusion to a perfectly spherical particle of that radius. For example, as seen in figure 1, the true radius of the particle refers to the distance between its center and its outer circumference, while the hydrodynamic radius includes the length of the attached segments since they diffuse as a whole. Hydrodynamic radius is inversely proportional to the translational diffusion coefficient.
Illustration of hydrodynamic radius
Figure 1: Illustration of hydrodynamic radius.

Applications - 翻译中...

By analyzing the fluctuating scattered light intensity due to Brownian motion, DLS can obtain the particle size distribution of small particles suspended in a diluted solution. Typically, the measuring size limit of DLS falls in the nano and sub-micro range, with the magnitude of 1 nanometer to 10 micrometers. There are several advantages of using the DLS when sizing particles. First, DLS is non-invasive to the samples, meaning that the structure of the molecules would not be destroyed during sizing. A small amount of sample is sufficient for a diluted solution preparation. With the DLS method, results with great repeatability and accuracy can be obtained within a few minutes. The testing process is nearly all automatic, minimizing operation errors from different operators. With DLS, the particle size distribution can be measured at different temperatures, and thus a thermal analysis can be conducted on the test sample. DLS provides various industries the opportunity to control their products' quality and therefore maximizing product performance by controlling particle size. These industries include but are not limited to semi-conductors, renewable energy, pharmaceuticals, inks, pigments, batteries, et cetera. 

Optical Setup - 翻译中...

The whole setup of DLS instrument is shown in Figure 2. 
Dynamic light scattering optical set-up of BeNano 90, Bettersize Instruments
Figure 2: Dynamic light scattering optical set-up of BeNano 90, Bettersize Instruments. 

•Laser
The majority of the laser devices in DLS instruments are gas lasers and solid-state lasers. Typical example of gas laser in DLS setup is helium-neon laser which emits laser with a wavelength of 632.8 nm. A solid-state laser refers to a laser device where a solid act as the gain medium. In a solid-state laser, small amounts of solid impurities called “dopant" are added to the gain medium to change its optical properties. These dopants are often rare-earth minerals such as neodymium, chromium, and ytterbium. The most commonly used solid-state laser is neodymium-doped yttrium aluminum garnet, abbreviated as Nd: YAG. Gas laser has the advantages of stable wavelength emission with relatively low cost. However, a gas laser usually has a relatively large volume that makes it very bulky. On the other hand, a solid-state laser is smaller in size and also less heavy, making it more flexible to handle.

•Detector 
After the laser beam irradiates onto the sample cell, light is scattered by the particle, and this scattered light is fluctuated because of Brownian motion. A highly sensitive detector picks up these scattered light fluctuations signals at even low-intensity levels and converts them to electrical signals for further analysis in the correlator. Commonly used detectors in an optical setup of DLS include photomultiplier tube and avalanche photodiode. According to Lawrence W.G. et al., PMT and APD have similar noise to signal performance at most signal levels, while the APD outweighs the PMT at red and near-infrared spectral regions. APD also has higher absolute quantum efficiency than PMT. Because of these reasons, recently APD is being more frequently utilized in DLS devices.

•Correlator
After the optical setup, the process of scattering and collecting light intensity is completed. The signals detected by detectors are then analyzed in the correlator to eventually calculate the hydrodynamic radius distribution. 
We can multiply the scattering intensity collected from the detector with itself after it has been shifted by some arbitrary interval tau (τ) in time. This τ can be anything between a few nanoseconds and microseconds, but the actual value of the time interval does not affect the test result. 
After applying mathematical algorithm, the auto-correlation function G1(q, τ) can be obtained. G1(q, τ) single-exponentially decays from 1 to 0, with 0 meaning there's no correlation at all between signals at time t and time t plus τ, and 1 meaning perfect correlation. Finally, with all the known information of the correlation function, the hydrodynamic radius can be computed using the Stokes-Einstein equation. 

Monodisperse vs Polydisperse - 翻译中...

Monodisperse particles are all identical in size, shape, and mass, resulting in one narrow peak in the particle size distribution curve. On the other hand, polydisperse particles are not uniform in those parameters. It is important to realize the polydispersity of the samples because the algorithms of calculating hydrodynamic radius distribution in the correlator are different depending on whether the samples are monodisperse or polydisperse.
Two main mathematical algorithms are used to solve the auto-correlation function of polydisperse sample. The first and most common one is the Cumulants method, which involves solving the Taylor expansion of the auto-correlation function. However, the Cumulants method is only valid with samples that have small size polydispersity. Validation of the calculation can be done by computing and checking the polydispersity index, or PDI, and Cumulants analysis is only valid if the PDI value is relatively small. The CONTIN algorithm can directly compute the hydrodynamic radius distribution for samples that are widely dispersed. It is a relatively complicated mathematical method involving regularization. 

Data Interpretation - 翻译中...

Interpreting results can aid us in evaluating the quality of the particle size test, and also obtain information about the particle size distribution.
The quality of the correlation function should be checked before proceeding to the particle size analysis since it directly relates to the accuracy of the particle size result. The overall shape of the correlation function could well indicate its quality. As shown in figure 6, if the correlation curve is a smooth curve exponentially decaying from 1 to 0 without presence of noise, it suggests that the correlation was well performed and it is good to proceed to particle size distribution analysis.
Example of a good correlation function curve.
Figure 6: Example of a good correlation function curve.

However, if the curve is still overall smooth with some level of noise, as shown in the figure 7, it might be due to the presence of impurities in the samples that affect the repeatability of the results. Under this scenario, the operator can filter the sample solution with the appropriate syringe pore size again to remove the impurities such as big dust particles in the solution.

Example of a correlation function curve with noise.
Figure 7: Example of a correlation function curve with noise. 

When the scattering is insufficient in a test, its correlation function curve would look like the curve in figure 8.
Example of a poor correlation function curve.
Figure 8: Example of a poor correlation function curve.

In this case, the maximum value of the function is much less than 1, and it does not exhibit exponentially decay behavior. The operator could increase the sample concentration or the number of sub-runs to increase the amount of scattering.

DLS reports results in z-average particle size, which is a scattered intensity weighted size. It comes from the fact that when computing the correlation function integral using the Cumulants and CONTIN method, an average translational diffusion coefficient is obtained and thus resulting in the average hydrodynamic radius from the Stokes-Einstein equation. The z-average particle size’s validity should be checked with the polydispersity index or PDI. As shown in the table, a sample results report of particle size from DLS includes its z-average particle size with uncertainty, and the PDI value corresponding to that z-avg particle size.
If the value of PDI is large, indicating that the samples are possibly polydisperse, then the z-average particle size is not a fully representative description of the given sample.
According to the ISO 22412:2017 Particle Size analysis of dynamic light scattering, the particle size results should be reported along with its uncertainties and repeatability. The measurement uncertainty is expressed by the standard deviation, while the repeatability is the relative standard deviation that describes how close the results obtained from multiple measurements are to each other within each run of the test. As regulated by ISO 22412:2017, monodisperse materials with diameters between 50nm and 200nm should have z-avg particle size with repeatability less than 2%.

Reference - 翻译中...

Chu, B. Laser Light Scattering: Basic Principles and Practice, 2nd ed.; Academic Press: Boston, 1991.

Dian, L.; Yu, E.; Chen, X.; Wen, X.; Zhang, Z.; Qin, L.; Wang, Q.; Li, G.; Wu, C. Enhancing Oral Bioavailability of Quercetin Using Novel Soluplus Polymeric Micelles. Nanoscale Res Lett 2014, 9 (1), 684. https://doi.org/10.1186/1556-276X-9-684.

Dhont, J. K. G. An Introduction to Dynamics of Colloids; Studies in interface science; Elsevier: Amsterdam, Netherlands ; New York, 1996.

Falke, S.; Betzel, C. Dynamic Light Scattering (DLS): Principles, Perspectives, Applications to Biological Samples. In Radiation in Bioanalysis; Pereira, A. S., Tavares, P., Limão-Vieira, P., Eds.; Bioanalysis; Springer International Publishing: Cham, 2019; Vol. 8, pp 173–193. https://doi.org/10.1007/978-3-030-28247-9_6.

ISO 22412:2017. Particle Size Analysis – Dynamic Light Scattering (DLS). International Organization for Standardization. 

Lawrence, W. G., Varadi, G., Entine, G., Podniesinski, E., & Wallace, P. K. (2008). A comparison of avalanche photodiode and photomultiplier tube detectors for flow cytometry. Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI. doi:10.1117/12.758958 

Light Scattering from Polymer Solutions and Nanoparticle Dispersions; Springer Laboratory; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-71951-9.

Nanoscale Informal Science Education Network, NISE Network, Scientific Image – Gold Nanoparticles. Retrieved from https://www.nisenet.org/catalog/scientific-image-gold-nanoparticles. 
 
Nanoparticles Series, Silicon Nanoparticles Product Details, ACS Materials. Retrieved from: https://www.acsmaterial.com/silicon-nanoparticles.html

Optical Sensors, Photomultiplier Tube, Newport Corporation. Retrieved from: https://www.newport.com/f/photomultiplier-tubes?q=PMT

Optoelectronic Components, Avalanche Photodiodes (APD), Warsash Scientific. Retrieved from: http://www.warsash.com.au/products/optoelectronics/PHOTONIC-DETECTORS.php

Scotti, A.; Liu, W.; Hyatt, J. S.; Herman, E. S.; Choi, H. S.; Kim, J. W.; Lyon, L. A.; Gasser, U.; Fernandez-Nieves, A. The CONTIN Algorithm and Its Application to Determine the Size Distribution of Microgel Suspensions. The Journal of Chemical Physics 2015, 142 (23), 234905. https://doi.org/10.1063/1.4921686.
最新のDLSナノ粒子径分析装置と改良されたデータ処理技術の開発により、現在のナノ粒子サイズ分布分析用の動的光散乱装置は、粒子サイズを測定するだけでなく、分子のゼータ電位と分子量を測定する機能も備えているため、 ナノ粒子径分析装置は、ナノ粒子分析に広く使用されています。BettersizeNanoptic 90は、ナノ材料の粒子径測定するための典型的なDLS装置です。

動的光散乱のDLSの原理は、ブラウン運動による液体分子による衝突により、ナノ粒子、エマルジョン液滴、および懸濁液中の分子が移動することです。 レーザーがこれらの動的粒子または分子と相互作用すると、散乱光の強度に変動が生じます。 変動の頻度は、粒子の速度に依存します。これは、粒子のサイズに直接関係します(粒子サイズが小さいほど動きが速く、粒子が大きいほど動きが遅くなるため、ブラウン運動の影響を受けます。 モーション)。

The principle of DLS of dynamic light scattering

.したがって、粒子のブラウン運動の速度は、散乱光の強度変動を分析することによって得られ、ナノ粒子の粒子サイズと粒子サイズ分布は、ストークス・アインシュタイン方程式を使用して取得できます。 そして、それがナノ粒子のサイズを測定する方法です。
  • No.9, Ganquan Road, Jinquan Industrial Park, Dandong, Liaoning, China.
    No.9, Ganquan Road, Jinquan Industrial Park, Dandong, Liaoning, China.
  • 86-415-6163800
    86-415-6163800